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Abstract. Even though quantum pumping is a very promising field, it has unfortunately not been un-
ambiguously experimentally detected. The reason being that in the experiments the rectification effect
overshadows the pumped current. One of the better known ways to detect it is by using the magnetic
field symmetry properties of the rectified and pumped currents. The rectified currents are symmetric with
respect to magnetic field reversal while the pumped currents do not possess any definite symmetry with
respect to field reversal. This feature has been exploited in some recent works. In this work we look beyond
this magnetic field symmetry properties and provide examples wherein the nature or magnitudes of the
pumped and rectified currents are exactly opposite enabling an effective distinction between the two.

PACS. 73.23.Ra Persistent currents – 72.10.Bg General formulation of transport theory

1 Introduction

Quantum pumping is an unique way to transport charge
or spin without applying any voltage bias [1,2]. The idea of
quantum pumping has been around for a long time begin-
ning with the works of Thouless in reference [3] and Niu in
reference [4] and later with the works of Buttiker, Thomas
and Pretre in reference [5], Brouwer in reference [6] and
Zhou, Spivak and Altshuler in reference [8]. Regrettably
the unambiguous detection of this effect has not been pos-
sible till date [9,10]. The experiment [11] which was orig-
inally thought to be a quantum pumping experiment is
now universally accepted as a detection of rectified cur-
rents [12]. Although there might have been a pumped cur-
rent which unfortunately was masked by the rectified cur-
rents [9,10,13]. Experimentally, what seems to happen in
pumping experiments is that the time dependent parame-
ters may through stray capacitances directly link up with
the reservoirs and thus indirectly induce a bias which is
the origin of the rectified current [10]. The reason why the
urgent detection of a true quantum pump effect is imme-
diately required is because manifold theoretical proposals
based on quantum pumping ranging from the use of the
quantum pump effect to drive a pure spin current [14,15]
to the use of quantum pump effect as a means for quan-
tum computation [16] have come up. With so much at
stake an early resolution of this vexed question is not only
necessary but also urgently required. This work proposes
to answer this question.

Now how to detect pumped and rectified currents if
both are present in a single experiment. One of the ways is
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to look at the symmetries with respect to magnetic field re-
versal these currents possess [9,17,18]. To further explain
the preceding statement let us start from the definitions of
the rectified and pumped currents. The rectified current
in a two terminal setup is given by [10]:

Irect =
w

2π
R

∫
S

dX1dX2

(
C1

∂G

∂X1
− C2

∂G

∂X2

)
. (1)

Herein R is the resistance of circuit path and is assumed
to be much less than the resistance of the mesoscopic scat-
terer, while C1 and C2 are stray capacitances which link
the gates to the reservoirs, X1 and X2 are the modu-
lated gate voltages. Finally, G is the Landauer conduc-
tance which is just the transmission probability (T ) of the
mesoscopic scatterer. The pumped current into a specific
lead in a two terminal system, is in contrast given as [6]

Ipump =
e

π

∫
A

dX1dX2

∑
β

∑
α∈1

Im
(
∂S∗

αβ

dX1

∂Sαβ

dX2

)
. (2)

In the above equation, Sαβ defines the scattering ampli-
tude (reflection/transmission) of the mesoscopic sample,
the periodic variation of the parametersX1 andX2 follows
a closed path in a parameter space and the pumped cur-
rent depends on the enclosed area A in (X1, X2) parame-
ter space. Initially, the mesoscopic sample is in equilibrium
and for it to transport current one needs to simultaneously
vary two system parametersX1(t) = X1+δX1 sin(wt) and
X2(t) = X2 + δX2 sin(wt+φ), herein δXi defines the am-
plitude of oscillation of the adiabatically modulated pa-
rameters. In the adiabatic quantum pumping regime we
consider the system thus is close to equilibrium [7].
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The essential difference between the rectified currents
and the pumped currents are while the former is bound
to be symmetric with respect to magnetic field reversal
(via, Onsager’s symmetry) since the conductance [19] and
it’s derivatives enter the formula, the pumped currents
would have no definite symmetry with respect to mag-
netic field reversal [17,18] since they in turn depend on
the complex scattering amplitudes which have no specific
dependence on field reversal unless the scattering system
possesses some specific discrete symmetries [18]. The main
motivation of this work is to provide examples beyond the
distinctive properties the two currents possess with re-
spect to magnetic field reversal.

The examples show that the currents can be easily dif-
ferentiated, either there natures are so different or their
magnitudes are so very different that it enables an easy
detection. The three examples provided are: (1) pumped
and rectified currents in presence of magnetic barriers; (2)
pumped and rectified currents in a normal metal double
barrier structure; and finally (3) pumped and rectified cur-
rents at a normal metal- charge density wave interface. In
example (1) while the pumped currents are cent percent
spin polarized the rectified currents are completely unpo-
larized, in example (2) pumped current is finite while the
rectified current is zero, and finally in example (3) the rec-
tified current again is zero while pumped current is finite.
Of course these examples are by no means the only ex-
amples that can be found there might be numerous other
examples wherein the pumped and rectified currents vary
in such a distinct fashion apart from of-course the dis-
tinction brought out by magnetic field symmetry. In ref-
erence [20] the authors consider a three terminal structure
with a single normal metal lead with two superconduct-
ing leads. The pumped current into the normal metal lead
has no definite symmetry with respect to the phase of the
order parameter while the conductance is symmetric in
phase. In another interesting work [21], the effect of de-
phasing was considered and it was shown that effect of
dephasing on rectification effects is less pronounced than
for quantum pumping.

The rectified currents in the adiabatic quantum pump-
ing regime we consider differ from that in the non-linear
dc bias regime. In the latter the Onsager symmetry rela-
tions are not obeyed [22] while in the former (from Eq. (1))
they are obeyed. Further rectification can also be talked of
when a high frequency electromagnetic field is applied to
a phase coherent conductor [23]. This case also falls into
the non-linear regime.

Our motivation in this work is plain. We provide three
examples wherein the distinctive characteristics of the
pumped and rectified currents are brought out. The sym-
metry properties these currents have with respect to mag-
netic field reversal are not as clear cut as it would seem
initially. For example in reference [18] it was pointed out
that if the mesoscopic scatterer has some distinct spatial
symmetries then the pumped current itself can be sym-
metric with respect to magnetic field reversal. Our work
hopefully will provide a compass which would point into
clear blue water between rectified and pumped currents.

Fig. 1. (a) The device- on top of a 2DEG a parallely magne-
tized magnetic stripe is placed. (b) The realistic magnetic field
profile in a 2DEG along-with the magnetic vector potential
for the device represented in (a). (c) The model magnetic field
(delta function B(x)) profile along with the magnetic vector
potential A(x).

2 Examples

In the examples below we look into the weak pump-
ing regime for both the rectified as well as the pumped
currents, since we can derive analytical expressions in
this regime. The weak pumping regime is defined as one
wherein the amplitude of modulation of the parameters is
small, i.e., δXi � Xi. In the weak pumping regime the
rectified current reduces to:

Irect = Ix
rect

[
C1

∂T

∂X1
− C2

∂T

∂X2

]
(3)

with Ix
rect = we2 sin(φ)δX1δX2R/4π2

�. T is the transmis-
sion coefficient of the mesoscopic scatterer, and for the
special case of capacitances with equal magnitude, i.e.,
C1 = C2 = C one has:

Irect = I0
rect

[
∂T

∂X1
− ∂T

∂X2

]
(4)

with I0
rect = we2 sin(φ)δX1δX2RC/4π2

�. Similarly the
pumped current into lead α are:

Ipump,α = I0
pump

∑
β

∑
α∈1

Im
(
∂S∗

αβ

dX1

∂Sαβ

dX2

)
(5)

with I0
pump = we sin(φ)δX1δX2/2π, w is the frequency

of the applied time dependent parameter, φ is the phase
difference between the parameters and e is the electronic
charge.

2.1 Magnetic barrier’s

The first example is of pumping and rectification in case
of a magnetic barriers. The model of our proposed de-
vice is exhibited in Figure 1. It is essentially a 2DEG in
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the xy plane with a magnetic field in the z-direction. The
magnetic field profile we consider is of delta function type
for simplicity, B = Bz(x)ẑ with Bz(x) = B0[δ(x+ d/2)−
δ(x−d/2)], wherein B0 gives the strength of the magnetic
field and d is the separation between the two δ functions
(see Fig. 1c). The above form of the magnetic field is an
approximation of the more general form seen when paral-
lely magnetized ferromagnetic materials are lithographi-
cally patterned on a 2DEG (Fig. 1b). This approximation
is not novel to this work but has been used in a number
of works, see reference [21] for further details. Magnetic
barrier’s can not only be formed by this method but also
when a conduction stripe with current driven through it
is deposited on a 2DEG, and also when a super-conductor
plate is deposited on a 2DEG, see references [24,25] for
details. The structure depicted in Figure 1 has been ex-
perimentally produced as shown in reference [24]. There
are a host of experiments [26] wherein such type of and
similar structures are made, discussed and transport mea-
surements carried out.

A 2DEG in the xy plane with a magnetic field pointing
in the z direction is described by the Hamiltonian-

H =
1

2m∗ [p + eA(x)]2 +
eg∗

2m0

σ�

2
Bz(x)

=
1

2m∗ (px
2 + [py + eA(x)]2) +

eg∗

2m0

σ�

2
Bz(x) (6)

where m∗ is the effective mass of the electron, p is it’s
momentum, g∗ the effective g-factor and m0 is the free-
electron mass in vacuum, σ = +1/ − 1 for up/down spin
electrons, and A(x), the magnetic vector potential is given
in the landau gauge for the region −d/2 < x < d/2 and for
incoming electrons from the left by A(x) = B0ŷ, and for
electrons incoming from the right by A(x) = −B0ŷ, The
magnetic vector potential is zero otherwise. The last term
in equation (6) is zero everywhere except at x = ±d/2.
For simplicity we introduce dimensionless units, the elec-
tron cyclotron frequency wc = eB0/m

∗c, and the mag-
netic length lB =

√
�c/eB0,with B0 being some typical

magnetic field. All the quantities are expressed in dimen-
sionless units: the magnetic field Bz(x) → B0Bz(x), the
magnetic vector potential A(x) → B0lBA(x), the coordi-
nate x → lbx and the energy E → �wcE(= E0E).

Since the Hamiltonian as depicted in equation (6)
is translation-ally invariant along the y-direction, the
total wave-function can be written as Ψ(x, y) =
eiqyψ(x), wherein q is the wave-vector component in
the y-direction. Thus one obtains the effective one-
dimensional Schroedinger equation-

[
d2

dx2
− {A(x) + q}2 − eg∗

2m0

σm∗

�
Bz(x)

+
2m∗

�2
E

]
ψ(x) = 0. (7)

The S-matrix for electron transport across the device can
be readily found out by matching the wave functions and
as there are δ function potentials there is a discontinuity

in the first derivative. The wave functions on the left and
right are given by ψ1 = (eik1x + re−ik1x) and ψ3 = teik1x,
while that in the region −d/2 < x < d/2 is ψ2 = (aeik2x +
be−ik2x). The wave vectors are given by- k1 =

√
2E − q2,

k2 =
√

2E − (q +Bz)2 and for electrons incident from
the right, k2 in the wave-functions is replaced by k′2 =√

2E − (q −Bz)2. With this procedure outlined above one
can determine all the coefficients of the S-Matrix

Sσ =
(
sσ11 sσ12

sσ21 sσ22

)
=

(
rσ t′σ
tσ r′σ

)

rσ =
−i sin(k2d)(k2

1 − k2
2 − λ2 − 2iλσk1)

D

tσ =
2k1k2

D
, t′σ =

2k1k
′
2

D′

r′σ =
−i sin(k′2d)(k

2
1 − k′22 − λ2 + 2iλσk1)

D′

with

D = 2k1k2 cos(k2d) − i sin(k2d)(k2
1 + k2

2 + λ2),
D′ = 2k1k

′
2 cos(k′2d) − i sin(k′2d)(k

2
1 + k′22 + λ2),

λ =
g∗Bz

2
, k1 =

√
2E, k2 =

√
2E − (q +Bz)2

and

k′2 =
√

2E − (q −Bz)2.

One can readily see from the transmission coefficients,
there is no spin polarization as T+1 = T−1. This type of
structure has already been studied in reference [14] where
it’s remarkable pure pumped spin current properties were
noticed. In this work we compare and contrast the pumped
currents with the rectified currents and show that the
rectified currents are completely unpolarized. This pro-
vides an unique way to distinguish the two effects. The
schematic of the system is exhibited in Figure 1. We in
the following consider q = 0, and therefore k′2 = k2.

Initially, the device is in equilibrium, and for it to
transport current one needs to simultaneously vary two
system parametersX1(t) = X1+∂X1 sin(wt) and X2(t) =
X2 + ∂X2 sin(wt + φ), in our case X1 is the width d and
X2 the magnetic field Bz given in terms of the magne-
tization strength B0 = M0h, where h is the height and
M0 the magnetization of the ferromagnetic stripe. To in-
voke pumping in our proposed system we modulate the
width (d = d0 + dp sin(wt)) and magnetic field strength
(Bz = Bx +Bpsin(wt+φ)). Herein w is the pumping fre-
quency and φ is the phase difference between the two mod-
ulated parameters. Thus in this adiabatic pumping regime
the system is close to equilibrium. The transmission co-
efficient of this structure which in effect is the Landauer
conductance is

T =
4k2

1k
2
2

4k2
1k

2
2 cos2(k2d) + (λ2 + k2

1 + k2
2) sin2(k2d)
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with,

k1 =
√

2E, k2 =
√

2E −B2
z and λ1 =

g∗Bz

2
. (8)

As is self evident, the transmission is completely unpo-
larized, i.e. Tσ = T−σ. This fact was discovered only in
reference [27], two earlier works [28] had mistakenly at-
tributed spin polarizability properties to the device (as
depicted in Fig. 1) when a bias is applied. Further because
of the fact that spin polarization is absent in presence of
a bias, there wont be any spin accumulation [29] either.
Hence from equation (4), since the rectified current in-
volves the derivatives of the conductance with respect to
the modulated parameters as in equation (4), X1 = Bz

and X2 = d, the rectified current is completely unpolar-
ized. The explicit expression for the rectified and pumped
currents are:

Irect = I0
rect

− sin2(k2d)f ′ + k2 sin(2k2d)(f − 1)
T ′2

d

,

with

f =
[
λ2

1 + k2
1 + k2

2

2k1k2

]2

,

f ′ =
(2EBz(4 + g2B) +B3

z(g2 − 4)(1 −Bz))
(64E(2E −B2

z)2)

and

T ′
d = cos2(k2d) + f sin2(k2d).

In contrast the pumped currents as in reference [14], are
given as:

Iσ = σI0
pump

2B2
zg

∗g′k3
1k

2
2 sin(2k2d)

T 2
d

,

Isp = I+1 − I−1 = I0
pump

4B2
zg

∗g′k3
1k

2
2 sin(2k2d)

T 2
d

,

Ich = I+1 + I−1 = 0,

with

g′ = 1 − g∗2

4
,

Td = 4k2
1k

2
2 cos2(k2d) + [4E − g′B2

z ] sin2(k2d),

I0
pump =

ewBpdp sin(φ)
2π

, and

I0
rect = we2 sin(φ)BpdpRC/4π2

�.

The rectified currents as is evident from the above equa-
tions are completely unpolarized, while the pumped cur-
rents are completely spin polarized. There is net zero
pumped charge current while a finite pure spin current
flows. In Figure 2 we show the plots for the pumped cur-
rents with the rectified currents plotted in the inset of the
figure. The figure for the rectified currents is for equiva-
lent coupling of stray capacitances, but the unpolarized

Fig. 2. (Color online) Energy dependence of the pumped cur-
rent normalized by I0

pump. Spin polarized pumping delivering a
finite net spin current along-with zero charge current. The pa-
rameters are Bx = 5.0, d0 = 5.0, φ = π/2, g∗ = 0.44 and wave-
vector q = 0. In the inset the rectified currents are plotted. The
rectified currents normalized by I0

rect (for same parameters as
for pumping) are of-course completely unpolarized.

Fig. 3. The double barrier structure.The normal metal double
barrier structure is defined via the potential: V1δ(x)+V2δ(x-L).

nature of the rectified current will be valid as well in case
of non-equivalent stray capacitances, since the transmis-
sion is completely unpolarized. For q �= 0, as before we
have completely unpolarized rectified currents, but in the
pumping regime we no longer have pure spin pumped po-
larized currents but both pumped finite spin and charge
currents. Thus the system can again discriminate between
pumped and rectified currents but not as as effectively as
for the q = 0 case.

To conclude the analysis of magnetic barriers, we have
shown distinct properties of the rectified and pumped cur-
rents. The experimental realization of such type of struc-
tures has already been achieved. The only thing one has
to add is to adiabatically modulate two independent pa-
rameters of our structure (to derive the currents above we
have modulated the width of the magnetic barrier and it’s
strength) to see the distinctive spin polarizability proper-
ties the currents possess. To do this one can make a point
contact between the ferromagnetic stripe and the 2DEG
interface applying an ac gate voltages to this point con-
tact can change the shape of the structure while to change
the strength of the barrier one can apply an external time
dependent magnetic field to the ferromagnetic stripe.

2.2 Normal metal double barrier structure

In these type of structures pumping has again been stud-
ied as in reference [30]. We consider two δ function po-
tentials separated by a length l as in Figure 3. The
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Fig. 4. (Color online) The pumped (normalized by I0
pump)

and rectified currents (normalized by I0
rect) for a normal metal

double barrier structure as a function of the dimensionless
wavevector kl. The strengths of the delta function barriers
z1 = z2 = 1.0.

transmission and reflection amplitudes for such type of
structures can be easily calculated by matching the wave-
functions at the two interfaces and then by taking into
account the jump in the first derivative at the interfaces.
The transmission coefficient for this structure is given as:

T =
4

a2 + b2
(9)

with,

a = z1z2 sin(kl) + (z1 + z2) cos(kl) − 2 sin(kl),

b = 2 cos(kl) + (z1 + z2)sin(kl), and zi = mVi

�2k .

To invoke pumping in these structures we modulate the
strengths of the barrier potentials, thus z1 = z01 +
zp sin(wt), and z2 = z02 + zp sin(wt + φ). One can easily
notice from equation (4), that for barriers of equivalent
strength ∂T

z1
= ∂T

z2
and the system wont transport any

current but a finite pumped current exists. The rectified
currents are given by from equation (4),

Irect =
−4I0

rect

(a2 + b2)2
[2z1z2(z1 − z2) sin2(kl)

+ (z2
1 − z2

2) sin(2kl) + 2(z1 − z2)(cos(2kl)− 1)]. (10)

The rectified current thus by equation (4) is zero for
z1 = z2. In equation (10), I0

rect = we2 sin(φ)z2
pRC/4π

2
�.

Of course one must note that this is in addition for equi-
potential barriers is valid only if the strengths of the stray
capacitances as in equation (4), are also equivalent. Fur-
ther the pumped currents in the weak pumping regime
zp � z0i, i = 1, 2, can also be easily derived (from Eq. (5))
and are written below, again for z1 = z2 = z:

Ipump = I0
pump

−8 sin(kl)(z sin(kl) + cos(kl))
(a2 + b2)2

. (11)

Here again a and b are as given in equation (10), and
I0
pump = we2 sin(φ)z2

p/π. Thus for barriers of equal mag-
nitude the pumped current is finite while rectified currents

Fig. 5. The normal metal-charge density wave interface. We
disregard the proximity effect. ∆ denotes the strength of the
order parameter of the charge density wave while χ denotes its
phase.

are zero. Here we show that the rectified currents are zero
in contrast while pumped currents are finite. Of course
this result is subject to the condition that the capacitances
C1 = C2. In Figure 3, we plot the rectified currents and
pumped currents for such a structure.

The experimental realization of this structure is not at
all difficult, since double barrier structures have been ex-
perimentally realized for long. The only thing is by having
two ac dependent gate voltages to modulate the shape of
the double barrier structure such that the coupling to the
stray capacitances may be equal. If this condition is real-
ized then this very simple structure will be a very good
identifier of a genuine quantum pump effect if present.
Of course not any structure with equivalent stray capaci-
tances will give zero rectified current nor would any device
with equi-potential barriers, the most important fact is the
equality dT/dz1 = dT/dz2, which has to satisfied for the
absence of rectified currents.

2.3 Normal metal-charge density wave interface

Finally we show that pumping and rectification currents at
a normal metal charge density wave interface can also be
easily distinguished since the pumped currents are finite
while rectified currents are again zero. Since the conduc-
tance is effectively zero this result is in fact independent
of whether or not C1 = C2. We consider a normal metal-
charge density wave junction with an interface at x = 0
as in Figure 5. In the charge density wave region (x > 0)
the order parameter ∆(x) = ∆eiχ near the interface is not
constant but decays smoothly over a finite length of the
order of the coherence length [31]. This is the charge den-
sity wave proximity effect. In our analysis of the problem
we disregard the proximity effect and assume a step func-
tion pair potential. The structure we work with is depicted
in Figure 5.

A delta function potential V δ(x)at the interface mod-
els the impurity which pins the charge density wave. We
also assume the charge density wave and normal metal
to be one dimensional and average electron densities are
equal. The fermi wave-number kF and the effective masses
are assumed to be equal in the normal metal and charge
density wave regions. The scattering matrix of such a junc-
tion has been derived earlier in references [33,34]. Here we
give the results. The scattering amplitudes of the structure
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Fig. 6. (Color online) The transmission and reflection prob-
abilities are plotted (parameters are mentioned in the figure).
As is evident the transmission is zero in the tunneling regime.

depicted in Figure 5 are given below:

r =
−iz(u+ ve−iχ) + ve−iχ

(1 + iz)u+ izve−iχ
, (12)

r′ = − (1 + iz)veiχ + izu

(1 + iz)u+ izve−iχ
,

t =

√
k

q

1
(1 + iz)u+ izve−iχ

, (13)

t′ =
√
q

k

u2 − v2

(1 + iz)u+ izve−iχ
(14)

with

u2 =
1
2

(
1 +

w

E

)
, v2 =

1
2

(
1 − w

E

)
, (15)

in the propagating regime,
and

u2 =
1
2

(
1 +

iw′

E

)
, v2 =

1
2

(
1 − iw′

E

)
, (16)

in the tunnelling regime.
In the above expressions, w =

√
E2 −∆2, w′ =

i
√
∆2 − E2 and z = V/�vF , with q = E/�vF and k =

w/�vF in the propagating regime while k = iw′/�vF in
the tunnelling regime, χ is phase of the charge density
wave.

The unique thing of such a normal metal-insulator-
charge density wave structure is that the macroscopic
phase (χ) of the charge density wave appears in the expres-
sion for the transmission |t|2 and reflection |r|2 probabili-
ties. This is in sharp contrast to a normal metal-insulator-
superconductor structure where the macroscopic phase of
the superconductor does not appear in the transmission
and reflection probabilities. Here of course we are inter-
ested in the distinct characteristics of the rectified current
and the pumped current. The unique thing of our struc-
ture is that in the tunnelling regime for E � ∆2, the sys-
tem does not conduct (as |t|2 = 0, see Fig. 6) but pumps a

Fig. 7. (Color online) The pumped current into the Charge
density wave material at the interface between a normal metal
and a charge density wave interface is of course finite in the
tunnelling regime (E � ∆). In the main panel the pumped
currents are as function of the barrier strength z for different
values of the phase difference χ, while in the inset the currents
are plotted as function of the phase difference χ for different
values of the barrier strength z.

finite current as in Figure 7. This is because the transmis-
sion probability is zero which can easily be seen also from
the above equation, while in the same regime there is a
finite pumped current. To invoke pumping in this struc-
ture we modulate the strength of the delta function barrier
(z = z0 + zp sin(wt)) and the phase of the charge density
wave order parameter (χ = χ0 + χp sin(wt+ φ)).

In Figure 7, we plot the pumped currents into the
charge density wave material for such a structure in the
tunneling regime. The transmission and reflection coeffi-
cients are also plotted in Figure 6, which bring out the
fact that there is no transport in the tunneling regime.
The plot clearly brings out the differences as the rectified
currents in the tunneling regime are exactly zero while
a finite pumped current exists. The expression for the
pumped current can also be easily derived in the weak
pumping regime zp � z0 and χp � χ0 (see Eq. (4)), and
in tunneling regime, i.e., the limit where E � ∆-

ICDW
pump =

2zI0
pump[sin(χ) − 1]

az + bz cos(χ) + cz sin(χ) − cos2(χ)[dz − fz(χ)]
(17)

with, I0
pump = we2 sin(φ)zpχp/π, az = 1+8z4, bz = 4z(1−

2z), cz = 4z2(1 − 2z2), dz = 4z2(z2 + 2z − 3), fz(χ) =
8z3(cos(χ) + sin(χ)).

One can easily see that when the delta function which
pins the CDW is absent, i.e., z = 0, there is no pumped
current. Further when χ = π/2 there is again no pumped
current. Apart from these two cases the system pumps
a finite pumped current for all other values. Browser’s
formula as in equation (2), was derived for same parti-
cles carrying current at both sides of a scatterer. But
Brouwer’s formulation has been generalized to Normal
metal -superconductor junctions [32]. In normal metal-
superconductor junctions below the energy gap there
cannot be any quasi particle transmission, but there is
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Fig. 8. (Color online) The pumped current into the normal
metal lead at the interface between a normal metal and a
charge density wave interface is of course finite in the tunneling
regime (E � ∆). In the main panel the pumped currents are
as function of the barrier strength z for different values of the
phase difference χ, while in the inset the currents are plotted
as function of the phase difference χ for different values of the
barrier strength z.

andreev reflection which results in cooper pair transport
into superconductor. Something similar happens here be-
low the energy gap. Here there are no cooper pairs, there
are instead electron-hole pairs further there is no analog
of andreev reflection. What happens when the system is
biased is that there is no quasi particle transport into the
CDW, since the transmission probability is zero. Since the
pumped currents are described by amplitudes reflection
and transmission one has a finite pumped current into the
CDW. The pumped current into CDW is of-course made
of electron-hole pairs.

One can also describe the pumped current into normal
metal. One can also distinguish between rectification and
pumping via the currents in the normal metal. There is
of-course no net rectified current transported into the nor-
mal metal lead as whatever is incident at the interface is
completed reflected in the tunneling regime (R = 1). In-
contrast the pumped current is finite and in figure 8 we
plot the pumped currents into the normal metal lead. The
pumped characteristics can be seen from equation (18), for
either z = 0 or χ = π/2 there is no pumped current similar
to the pumped current into the CDW material.

IN
pump =

2zI0
pump[z sin(2χ) + sin(χ) − 1 − 2z cos(χ)]

4z4a(χ) − 8z3b(χ) − 4z2c(χ) + 4z cos(χ) + 1
(18)

with, I0
pump = we2 sin(φ)zpχp/π, a(χ) = 2 + 2 sin(χ) −

sin2(χ), b(χ) = cos2(χ)(sin(χ) − cos(χ) + 1), c(χ) =
sin(χ) + 2 cos(χ) − 3 cos2(χ).

The experimental realization of our structure wont be
difficult. Mesoscopic charge density wave interfaces have
been around for quite awhile now [33]. A metallic gate
electrode subject to an oscillating gate voltage is placed
on top of the charge density wave material, this arrange-
ment can be effectively used to modulate the phase of the
charge density wave [35]. Of course a very similar structure

to that which is envisaged here has been experimentally
realized by Adelman et al., in reference [36]. In the experi-
ment of Adelman et al., electric field induced variations of
the charge density wave order parameter lead to modula-
tion of the conductance. Further to modulate the interface
delta function barrier one can apply an oscillating voltage
at the interface. The experimental viability of this struc-
ture is of course guaranteed since such type of make-up
was theoretically envisaged to provide for a charge density
wave ratchet. The only difference will be quantum interfer-
ence effects dominating and the time dependent voltages
being in the adiabatic regime, i.e., at very low tempera-
tures and the system being in the mesoscopic regime.

Finally to conclude this section it should be noted that
these three examples may not be unique there might be
many other examples of the distinctive nature of the rec-
tified and pumped currents which can be easily and un-
ambiguously detected in experiments.

3 Conclusions

To conclude we have provided three examples in which
the pumped and rectified currents are so very distinct.
These examples provide an alternative and perhaps bet-
ter way to distinguish the rectified and pumped currents
since these go beyond looking just at the magnetic field
symmetry of the currents. The distinctive properties of the
rectified and pumped currents will also breakdown if the
mesoscopic scatterer has distinct spatial symmetries. In
that case looking at the magnetic field symmetry of the
currents wont provide the solution. In the first example
given above the rectified currents are completely unpolar-
ized while the pumped currents are pure spin polarized, in
the second example we have net zero rectified currents for
equal strengths of the potential barriers while in example
three the rectified currents do not exist at all in the tun-
neling regime while the system pumps a definite amount
of current both in to the charge density wave material and
the normal metal lead.

The author would like to thank Prof. G.E.W. Bauer for kindly
sending reference [33]. The author also thanks the organizers
of the workshop on Quantum information and decoherence at
Benasque, Spain from June 26–July 15 for providing funds to
attend. A major portion of the work was completed there.
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